ccr: A network of worlds for research®

David H. Ackley
Department of Computer Science
The University of New Mexico
Albuquerque, New Mexico

Abstract

Experienced artificial life world builders know the
long-term evolution of a system depends heavily on
its size, and that individual computers today, still,
support only modest worlds. Vastly richer worlds
are possible if we can meet the challenges of design-
ing for large-scale, distributed implementation. ccr
is an Internet-based software system in development
as a common environment for human and artificial
agents. With themes such as artificial life, infor-
mation access, agents, entertainment, and interac-
tivity, ccr is ultimately an evolution management
system, dedicated to enabling interdisciplinary re-
search on—and in—a complex, open-ended, shared
artifact.

1 MANIFESTO

The biggest problem facing computer science today is
how to go parallel. Broadly construed, this includes not
only parallel and distributed computing, networks, dis-
tributed AI, and so on, but also the evolution of protocols
and standards, and cryptography and computer security
generally. The classical Von Neumann architecture has
delivered miracles, but as a conceptual organization it is
largely tapped out. To design and build future com-
putation and communication networks, we will either
learn from or be forced to rediscover evolutionary bi-
ology, which, from the beginning, has dealt with parallel
and distributed processing under resource and reliabil-
ity limits, conflicting individual and collective goals, and
limited trust. Artificial life research can and should, but
to date has yet to, inform and unify these efforts.

The central tenet of the project is that “living sys-
tems” and “information systems” refer to the same class
of systems. The research goals are both theoretical and
practical: To understand better the connections between
‘information’ and ‘life’, and to design, build, deploy, and

*v0.1.86”(2)" release: in indep/doc/al5-ccrf.ps.gz To appear in Artificial
Life V, May 16-18, 1996; Nara, Japan.

evolve experimental systems that explore and extend the
‘living computation’ framework.

2 OVERVIEW

ccr is the working name! of a distributed environment
for fostering and studying interactions between human
and software life. The project focuses on a basic dilemma
in distributed-system research: Even to uncover the real
issues one must field a system with a significant number
of machines and users, but as the ‘mass’ of the system
grows it becomes more and more difficult to evolve the
system structurally, to respond to the issues that are
discovered.

The cer vision is of a non-proprietary software sys-
tem that retains evolvability and remains of moderate
size over the long term—say, hundreds to thousands of
machines and users, as a target—by drawing its users
initially and principally from the interdisciplinary pop-
ulation of investigators whose research is facilitated by
the existence of the system, and who are thus motivated
both to shape the directions of, and put up with the
overhead of, continued system evolution. Compared to
proprietary commercial systems aimed at mass markets,
ccr would be large enough to be relevant while small
enough to avoid a competitive threat, and could serve as
a vendor-independent technology and demand driver in
addition to enabling basic research that could not be con-
ducted safely or at all on commercial systems.

Version 0.1, the second prototype developed for the
project, now comprises some 52K lines of C and an-
other 11K of Tcl [16] and ccrl, and is in active devel-

Te., the pre-version 1.0 name. As of 3/31/96 the ver-
sion was v0.1.867(2)". To the question “What does ccr
stand for?” the canonical response is “Whatever you want
it to stand for,” to underline the goal of bottom-up, user-
driven system evolution. Similarly, those who want ccr to be
an acronym are invited to make up expansions to suit their
needs, or select from caricature cartoon clearwater communi-
cation community competitive computation connected coop-
erative creedence reality reconsidered realized reified research
revealed revival rooms.

S ohesse)
s &
PG

[cheezz)

Figure 1. A view of a ccrTk world.

opment and testing in a “universe” of a dozen or so in-
terconnected worlds. Though primitive, largely undocu-
mented, and crash-happy, pathways are clearing toward
a system tamed enough for adventurous interdisciplinary
researchers—and this fifth artifical life conference is a
good opportunity to offer an overview as development
proceeds. In addition to essentially all of the computer
sciences, ccr needs perspectives from art, biology, ecol-
ogy, economics, literature, political science, psychology,
and sociology, to name a few.

This document is a first introduction to cer, briefly
considering both general themes and more technical is-
sues. To anchor the discussion and provide a recur-
ring example, Figure 1 presents a recent snapshot taken
in cerTk, currently ccr’s primary graphical interface
world. Section 3 compares the ccr strategy to other
alife research methodologies. Section 4 introduces ver-
sion 0.1 specifically, touching on the interface language
ccrl, the computation and communication model, and
the object system. Section 5 concludes with riffs on
methodology and the meaning of life. For more current
information and plans for the system, visit http://-
www.cs.unm.edu/ ackley/ccr.

3 A RESEARCH MACROCOSM,
WITH PEOPLE

ccr breaks with most artificial life systems in a ma-
jor way by presuming an open world, both in that hu-

mans are expected to interact with the system while
it is running, and in that the underlying physical
implementation—the computers and communications
links—is expected to change dynamically. Three conse-
quences of this approach are: Research strategies change
because global repeatability is sacrificed, humans must
be enticed to use the system, and the tradeoffs between
security, efficiency, and power must be addressed, not
only early and fundamentally, but continually and at
many levels.

3.1 Repeatability is unscalable

A great virtue of closed-world alife models is that ev-
ery detail is determined by the researcher, so every
observation can be reproduced, and utterly controlled
variations can be tested. The price is that compar-
atively small worlds must be studied. With ingenu-
ity, much has been and remains to be learned from
such worldlets, and the possible richness of high-isolation
worlds grows with improvements in affordable individual
computers, but of course single-owner systems cannot
compete with large collaborative networks of systems.
The irony is that as computer systems become more
like living systems—more complex and articulated, more
robust and interconnected—they become less suited to
closed-world artificial life research. Ray’s NetTierra pro-
posal [18] offers one compromise position, in which re-
peatability is explicitly sacrificed but isolation is mostly

preserved.

3.2 Humans are evolutionary forces

ccr approaches the dilemma another way, trading the
isolated clarity of lab work for the symbiotic relevance of
field work. ccr proposes to be a strictly non-proprietary
[8] experimental platform, controlled by and for its re-
search users, providing a venue within which software for
computation and communication tasks— “agents,” “bro-
kers,” “robots,” etc.—can be created, copied, hybridized,
allowed to cooperate and compete for “market share”
and perhaps win through into the base ccr standards
and protocols.

As in typical alife systems, the overall “fitness func-
tions” are supplied by humans; on the other hand, in
ccr humans are also a source of novelty and change,
conflicting with the Darwinian principle of blind varia-
tion. Given the nature of complex adaptive systems [11],
and the gap between the manifest intentionality of the
individual human action and the wunintentional effects
that often ensue, it is an empirical question just how un-
Darwinian the evolution of a substantial ccr universe
would actually be.

3.3 Security is biology

Communication entails risk [1]: A message sender neces-
sarily reveals information in the act, and a message re-
ceiver is necessarily impacted in some way by the act, or
else no communication has occurred. The dual tasks—
of revealing some information while hiding some, and of
allowing selected influences while rejecting others—are
fundamental to the structure and function of living sys-
tems, from cell walls to immune systems, crucial to the
very notions of self and independent existence.

A price exacted by the oft-touted mobility of a “soft-
ware agent” is that it doesn’t control the physical hard-
ware that embodies it, so to protect its integrity it must
either hide from or ally with the machine owner. Com-
puter viruses take the former route; cer takes the latter,
committing to reveal to the owner the tradeoffs between
safety and power as obviously and intuitively as possible,
and placing its source code on the table as bona fides.
In turn, in a general release of ccr, the hardware owners
would commit to playing within the system? and would
place their digital signatures on the table co-signed by
existing ccr users (the bottom-up “web of trust” ap-
proach [20]) and/or an appropriate external certifica-
tion authority [19]. Various flavors of anonymity can be
created within the system, but only built upon a base
of identified owners, shifting risk from loss of integrity
to loss of anonymity. It is an open question whether
special-purpose protected hardware could in principle be

2Which includes researching attacks to devise defenses; in
that spirit cer 0.1 provides an “award” system to honor and
memorialize the publicizers and fixers of holes.

“owned” by the system itself, which could allow the con-
struction of robust “public spaces” with known and re-
liable rules of behavior, inside of independently-owned
computers—and if so, under what circumstances would
wise owners choose to incorporate it.

While technologies such as digital signatures [19] are
necessary, security is much more than a purely techni-
cal issue, and so the purely technical power of the sys-
tem must have corresponding limitations. In ccr, as
in most high-isolation alife systems [17, 6] as well as
emerging commercial systems such as Java [9], the ba-
sic approach to limiting communication risk via limit-
ing power is to control the semantics of the language
in which communications are expressed. Though Java
significantly improves security from the “language on
down”, as a general purpose programming language, its
approach to trust is at the level of the program and is
largely boolean—you either grant a disturbing amount
of power to an incoming Java ‘applet’ or you don’t run
it at all. As a research system, cer sacrifices some speed
and generality to gain fine-grained access control at mul-
tiple points including each function invocation, directly
supporting intuitive and ccr-specific degrees and modes
of trust and risk.

4 A TOUR OF VERSION 0.1

Though primitive compared to where it needs to be
for widespread use, version 0.1 is already quite rich—
possessing, for example, a fairly well-developed compu-
tational and communications model, a (and please ex-
cuse the jargon) multiply-inheriting runtime-extensible
persistent object-oriented interpreted language with in-
cremental network object and type cache updating, the
graphical user interface world cerTk, and the text-only
ccrt—and it is difficult to know where to begin to de-
scribe it. The hands-on approach is to sit down with
somebody at a pair of machines, walk them through
building a “genesis” world for themselves, then show
them how we build a “netdoor” between their world and
mine, and then have them over for a visit. Here, an
overview of the ccrl language serves as a backbone upon
which to hang brief discussions of related topics: the
user interface, the execution engine, and some basic ob-
ject types—such as &Matter and &Energy—that are key
elements of the cer “metaphysics.”

4.1 ccrl

Version 0.1 speaks a quirky language called ccrl® that
mediates communications between a ccr world and its
environment, which consists principally of humans, other
cer worlds, files, and spawned subprocesses. ccrl is
more akin to an application scripting language or an
object-oriented MUD programming language [3] than to

3Pronounced via spelling or as crawl to emphasize one of
its annoying quirks.

a conventional development language, in that it devel-
oped out of and in tandem with cer. In spots it carries
evolutionary baggage dating back at least to 1992 (ver-
sion 0.1.23); a redesign based on experiences thus far is
certainly warranted, but the issues are complex and the
language serves adequately for the present.

4.2 Hello world

It is a tradition in presenting programming languages to
begin with the “Hello world” program, which does noth-
ing except output “Hello world” in whatever form the
system most naturally supports. In different languages
the program may range from a line or two up to dozens or
more, and traditionally there are minor bragging rights
attendant to shorter solutions. Figure 2 presents the
Hello World program in cerl, and typical results of exe-
cuting it. ccrl minimizes this program just about as far
as it will go. Basic input and output are built deeply
into the language, rendering the Hello World task triv-
ial, but performing the exercise does highlight how the
choice of “Hello World” as the traditional first task—as
opposed to, say, “Hello Dave”—reflects the fact that typ-
ical programming systems are utterly oblivious to both
who’s programming and who’s out there listening, while
to ccr, for example, such matters are of paramount sig-
nificance. As may be suspected from Figure 1, cerTk

(a) Hello World,,
(b) Tsaid "Hello World"
(c) Dave-1 said "Hello World"

Figure 2. (a) The “Hello world” program in cerl (_,
denotes the Return key); (b) What I observe; (¢) What
others in the area observe.

worlds reduce the Hello World task still further, to a sin-
gle mouse-click on a predefined “Hi” button—but that
is indeed a cheat, since Hello World is meant to be at
least a template for producing strings in general, and
programming the buttons is a more complex procedure.
As a template for cerTk, Figure 2a is buggy in that
certain initial characters are significant. Figure 3 lists
some of the ccrTk reader’s initial character shortcuts
and their expansions as general ccrl object descriptions;
a more general ccrTk Hello World program, similar in
approach to MUD languages [3], is

’Hello world_,

In addition to “speaking” in various ways, shortcuts are
available for moving around, pushing, opening, closing,
and inspecting objects, and so forth.

As new users get more comfortable acting in their own
world, they are sometimes irritated to discover how lim-
ited their powers are when they are visiting other worlds,
until they appreciate the fundamental symmetry of the

distributed ccr universe—every user is at once a “god”
on their own world and a mere “mortal” when visiting
other worlds, and to first-order if you can’t do it to their
world, then they can’t do it to your world. This sym-
metry can be impacted in various ways by world-local
programming, but it appears so far that the early ar-
chitectural choice of a peer-to-peer universe, rather than
a client-server one—so that, for example, all users are
“home owners” with something to lose—was sound.

:—[Pose text "e"]

! = [TimeOut at e]

?— [Focus on e] *— [Teleport to e]

+— [Open object o] <—[Get at e field]
-—[Close object o] >—[Set at e field to]

’— [Say text "e"]
;—[Be text "e"]

Figure 3. ccrTk keyboard shortcuts and expansions.
(e denotes the cursor.)

4.3 Building

The expansions in Figure 3 suggest the general syntax
of cerl:

[TypeName slotname slotvalue slotname slotvalue . ..]

where each slotname names a local variable declared by
TypeName or one of its ancestor types. When handed
to a ccrl reader such expressions produce a description
of an object, and an extra step is needed to produce an
object so described. Rather than the “read-eval-print”
loop typical of interactive languages, the ccrl interac-
tion cycle is “read-build-run”: First (attempt to) con-
vert the textual form into an internal object description,
then (attempt to) build an object matching the given
description, and then “run” the object. This last step
may amount only to performing a function call and re-
turning a value (as Get does, for example), or (as in the
case of Say) it may involve asynchronously “releasing”
the object into the shared environment to have effects in
a region of space-time often involving network traffic to
other worlds.

If a ccr object is an instance of the &Matter type,
then once built it will persist across program restarts
until specifically removed. FEach piece of matter has
an identifier that is unique across the entire cer uni-
verse (such as :North3-Plaza@ccr.cs.unm.edu/13000,
where I was when I said “Say cheese!” in Figure 1). In
cer all matter objects are named, but not all objects
are matter. For example, objects of type &Act mediate
computation and communication, and thereby drive the
dynamics of the universe. An input like

You’re kidding!
which ccrTk readers parse as the description

[Exclaim Text "You’re kidding"]

eventually builds an &Exclaim object, which inherits
from a distant ancestor called &Energy, which is an
&Act.* Acts are somewhat like the “stack frames” of
conventional programming languages, but in ccr they
are first-class, allocated objects. &Energy objects, in
particular, “propagate” until they visit every object in
the refspace of their point of origin, or are “absorbed”
somewhere along the way. In Figure 1, for example, my
world was being bombarded by energy packets that had
originated on some half a dozen worlds and propagated
through the network to reach mine.?

4.4 Refspace

If for no other reasons than efficiency and security, dis-
tributed systems must somehow limit the range of possi-
ble object interactions. Often interactions are limited to
one “room” at a time—so travelling through doors is an
adventure, since you can’t see what you’re getting into
until you’re in it; other mechanisms such as “k-nearest
neighbors” lead to a fluctuating and non-obvious “radius
of interaction” as objects move.

In ccr, the reference space or “refspace” of a given
&Matter object is the set of &Matter objects that are
reachable from the given object by following “propaga-
tion rules” determined by the types of objects encoun-
tered. The lower right panel in Figure 1—with all the
rectangles and little icons and speech balloons—is a ren-
dering of the refspace of my ccr body. The rules of
energy propagation are symmetric and largely hierarchi-
cal, so for example, anything said by anybody in a &Room
propagates up to the room and then down to the other
occupants. But there is one huge exception: A &Link
object, when mated to another &Link, propagates to its
mate the energy that reaches it hierarchically, and “rera-
diates” energy arriving from its mate into the hierarchy.
This lateral propagation occurs whenever the connection
between two &Link objects is open, even if the links are
located in different containment hierarchies, and even if
they are on different ccr worlds. Via links, cer worlds
weave themselves into the fabric of the cer universe.

The most common subtypes of &Link are &Door,
&Body, and &Soul; here we discuss only the first. A
door is a link that only can be mated to another door,
and then only if they “match up” in a East/West or
North/South pair. In the refspace shown in Figure 1,
the largest black-outlined rectangle is a &Room—named

Tt was expected and initially designed so that ‘Energy’
was the most abstract active element of the system, but Acts
turn out to be more general—in particular, &Functions are
acts but not energy, unobservable except to their creator,
since they do not spontaneously ‘propagate’.

®More specifically, the “17/7/8/6/1” in the status line
near the top of Figure 1 reveals that at that moment my
world was connected to, and was thus willing to accept en-
ergy from, eight other worlds (and had, overall, seventeen
open I/O channels, seven visitors from other worlds, six open
netdoors, and one active external process.)

:Plaza though that is not obvious—and each of the
small grey rectangles overlapping the edges of the Plaza
is actually a mated pair of doors, with one end in the
Plaza and the other end someplace else. Because my
body was contained by a door, the entire refspace of the
door’s mate was part of my refspace, and consequently
I also saw one of the smaller rooms north of the Plaza.
That room has doors on three walls; the south door con-
nects back to the Plaza, the west door and the northern
east door are currently unmated. The southern east door
is mated and open, and leads to some other room. The
door I was standing in, which appears a cautionary or-
ange on a color display, is actually a netdoor, connected
through the Internet to another world, and all of my
refspace there appears somewhat darker than my own
world, as a reminder that that is not space that I con-
trol. On that remote world, one body is visible speaking.
He “heard” everything I said, and vice versa, but he was
unable to hear the clamor going on in the Plaza, be-
cause his refspace—determined by his location—ends at
the door I was standing in. If I were to take a step south,
I would leave the doorway and enter the Plaza, and I'd
no longer be able to see him, and vice versa. As bodies
move, their refspaces merge and separate, and the ongo-
ing stories of their ccr lives—mine is visible scrolling in
the large left-hand window—intertwine and diverge.

4.5 Making new physics

Though the god of a ccr world can travel anywhere
within it in a single step, using &Teleport energy, vis-
itors from other worlds must travel “overland” using
doors, allowing gods to control visitor access to their
worlds in a natural way. Most worlds, for example,
have regions that are private simply because they are
unreachable from any netdoor.® It is also easy to build
disconnected “public” regions that each have a netdoor
but have no local doors joining them, allowing visits to
different areas of a world while barring transits all the
way through it. Although this basic connectivity-by-
doors approach is intuitive and has worked well, gods
often wish to provide other sorts of access mechanisms
for other purposes. The extensibility of cerl offers many
ways to fulfill such wishes.

As a concrete example, though with only a brief ex-
planation, Figure 4 presents a ccrl type and method
definition that is in common use in the current ccr uni-
verse, designed to provide visitors with controlled access
to the powerful teleport energy. The first expression de-
fines a new type called &ZapSpace, which inherits from
&Space so it will be a visible and enterable object, and
which inherits from &Force so it will be able to build and
release (selected types of) energy. ZapSpace defines one
local variable or “slot” to store a teleport destination;

5Unusually powerful items, such as the Quit button, are
also protected by “point defenses.”

[deftype at "ZapSpace" isa (&Space &Force)
redefault ((_Space,Floor () B1,1x1:.))
slots (("destination" (::private) @@))]

[defmethod act &enter object &ZapSpace
class ::object
at [let
variable
(($dest [get
at [get at $self
field _verb,object]
field _ZapSpace,destination])
($objid [get at $self field _verb,subject]))
at [if at $dest
then
[progn
at ([teleport obj $objid at $objid
to $dest]
[return])]111]

Figure 4. Defining a new type and method.

in this case, mostly for entertainment value, the slot is
marked ::Private, meaning that values in this slot will
never be shipped offworld by the network cache manage-
ment system, and so visitors will be unable to tell where
a given ZapSpace will take them, until they try it.

The second expression defines a method that will
be executed whenever an object requests to enter a
ZapSpace. If the _ZapSpace,Destination slot has been
initialized by the local god, the method teleports the
subject of the enter energy—whatever is attempting to
enter the ZapSpace—to the fixed destination, and then
performs a [return], in effect “absorbing” the enter en-
ergy so that it has no further effects. Unlike doors as
normally used, a ZapSpace is asymmetric: There may
be no way back, for visitors, from the destination of a
ZapSpace. Fortunately, the “bail button” (the “outward
and inward arrows” icon at the top of the righthand col-
umn of buttons in Figure 1) always brings a user back
home, come what may while out exploring the universe.

5 DISCUSSION

That brief look at version 0.1 raises far more questions
than it answers, but hopefully it at least provides a flavor
of the system and some of the issues involved. This final
section returns to broader questions: How can we do
research, particularly alife research, in ccr? In what
sense is ccr alive?

5.1 ccr for alife

From a high-isolation “in the lab” perspective, having
“humans in the loop” means any data on cer’s evolution-
ary behavior is fundamentally tainted—after all, what’s
to stop a researcher/user from “cooking the data” by
acting in some particular way solely for that purpose?
This is indeed a problem, though not an insurmountable
one; in addition to careful experimental design and data
collection, the key is building a large enough universe
that idiosyncratic individual effects wash out, much as

medical research conducts large-scale studies using its
own professional ranks as subjects.

It is also possible to perform more-and-less isolated
alife experiments within ccr. For example, Hofmeyr [10]
has built a small system of reproducing and evolving
“robots” confined to a single room on his world, using a
combination of ccrl code and external C++ code run-
ning in subprocesses managed by ccr. In such cases,
ccr provides an infrastructure both for the experiment
and for allowing visitors around the world to watch and
interact with the “evolvobots” in action. A common,
Internet-aware platform such as cer could substantially
improve the abilities of alife researchers to collaborate,
and to observe, share, and duplicate results.

-
ferowl)

iy

L] %__ wve

Figure 5. Evolving robots in ccrTk.

Figure 5 shows some early evolution in Hofmeyr’s ccr
“laboratory.” The lab has no doors—the only way in,
for visitors, is via an external ZapSpace destined for
the lab, and there is no way out at all, short of ask-
ing Hofmeyr for a teleport, if he’s around, or else bail-
ing. The robots move about, analyzing the visual ap-
pearances of those around them, and reacting in vari-
ous ways depending on their evolving genetic predispo-
sitions. Some seek visually-pleasing “mates” with which
to recombine—which may in fact be a visitor to the lab,
as the hybrid offspring in the middle of the west wall
suggests. More aggressive robots will chase after visi-
tors or robots with appearances they dislike—the robot
initialized with a “mouse” image is evidently such an of-
fender in Figure 5—and the aggressor will destroy the
displeasing creature if it gets adjacent to it.

Other ccr creatures survive and make a living “in the
wild.” The egg-shaped face visible near the upper-left
corner of the Plaza in Figure 1, for example, is a “Floyd”
robot [15]. Floyds can’t move or reproduce without the
intervention of the world owner, but they use the ccr
infrastructure to keep in touch with each other, forming a
‘Floyd-species-level’ communication network within the
ccr universe. Especially in these early days, when the
universe is small, asking one’s Floyd “Who is up?” is a

handy way to check activity around the universe.

At a pedagogical level, getting a software agent to
function effectively in a system as rich as ccr is it-
self an insightful process. For example, since cer must
view external subprocesses as “non-self”, there are “fil-
ters” attached to their representations inside the sys-
tem: A “senses” filter determining what propagated en-
ergy should be transmitted the subprocess, and “effec-
tor” filters determining what the subprocess is allowed
to build and run within ccr. Examining the filters al-
lows a ccr user to “size up” an unfamiliar robot, to tell
precisely what it is capable of sensing and doing, and to
act accordingly. Novice robot builders often set all the
filters to (([Anything] ::Allowed)), both with high
hopes of constructing a powerful robot that is keenly
aware of its environment, and to avoid figuring out which
types are actually relevant. They quickly find their robot
buried under a flood of energy of which as users, due to
the default filters on their souls, they had been blithely
unaware—communications protocols, timing signals, in-
cremental database updates, and so forth—a firehose of
data that is both computationally and conceptually hard
to handle. It takes some experience to appreciate just
how deeply coupled are the senses, effectors, and brains
of a well-adapted creature, and how being less aware of
the environment can both radically reduce the brains re-
quired to handle a given task and lead to far more elegant
solutions.

5.2 Living computation

Managing distributed computations across large net-
works of separately administered resources is in impor-
tant ways more akin to managing a human society than
to marshalling the closely-held resources of a single dig-
ital computer. Viewing living systems, especially living
ecosystems, as computational systems, provides many
insights into what the successful architecture may look
like [2]. Though object-oriented programming, for exam-
ple, is a step in the right direction, fundamental issues—
some quite obvious in the context of living systems—
remain largely unrecognized.

Consider, for example: Relatively “complex” living or-
ganisms such as, say, mammals, are always “designed,
built, and tested” on a whole system basis—there are
(until very recently) no “plug-ins,” “patches,” or “up-
grades” to an individual’s genetic code. The germ
line code storage and transmission mechanisms defend
against external alterations in many ways—physical,
biochemical, developmental, immunological, instinctive,
and cultural. Such elaborate and expensive defenses
are sensible given the relatively high cost of producing
a system—if the results could be easily “hijacked,” the
capital investment would be unwarranted.

On the other hand, relatively “simple” living or-
ganisms such as bacteria are capable of incorporating
“stray” bits of code from their environment into their

“operating systems”—as when a gene coding for drug
resistance is observed to “jump species”—to the dismay,
at least, of the complex organisms that produce the drug.
Such promiscuity is sensible given the relatively low cost
of producing a system, combined with the potential gains
to be had by “stealing code.”

Is a computer system more like a collie or an E. Coli?
On the one hand, even a personal computer is an expen-
sive investment, and if it is used productively its value
rises much higher than its capital cost. On the other
hand, personal computers today are a motley patchwork
of code from dozens of sources, with essentially no “sense
of self” [7], most of them still lacking even the most basic
immunologic mechanisms such as protected kernel mode.

We can be quite confident that this embarrassing com-
bination of traits is not an evolutionarily stable strategy
in Maynard-Smith’s sense [14], as the essentially imme-
diate explosion of computer viruses following the rise of
personal computers attests. Today, the appellation “per-
sonal computer” is in important ways a misnomer. The
personally-owned computer does not “know” its owner
in any significant way, and that’s just as well because it
is fundamentally unable to distinguish between what is
“inside itself” and to be trusted with sensitive informa-
tion (merely beginning with passwords) and what is not.
If future personal computers do not make a credible case
for loyalty to their owners, all the interface and ease-of-
use improvements in the world will not get people to
use them for serious work, but if a useful system demon-
strates it is watching out for its owner’s best interests,
first, last, and always, from hardware to software to data
to communications, people would clap rocks together in
Morse code, if they had to, to interact with it.

5.3 ccr as life

I have talked about objects and processes within ccr,
and about ccr itself, in a variety of “life-like” terms,
without qualifying such descriptions as figurative or
metaphorical. Although this is typical in alife research,
it is worth some consideration. Developing ccr over the
last five years or so has led me to think that Dawkins’
suggestion, that the origin of life on Earth also marked
the origin of information on Earth [5], is so deeply cor-
rect that I must suggest that we may view

Life preserves information

as defining both “life” and “information” in terms of each
other. It is certainly plausible to claim that “All living
systems do an effective job preserving information”. Is it
completely absurd to say that “All effective information-
preserving systems are living systems”? We ground out
the mutual recursion in cases where we have other prima
facie reasons to describe a system as “living” or as “pre-
serving information” —and our understanding of the dual
role of DNA, as both an active catalytic controller of

chemistry during the existence of a cell and as a passive
reaction product during cell copying, provides one such
base case.

Such a high-handed approach, while riding roughshod
over all sorts of important issues, offers a way to unite
“life is selfish gene-copying” advocates [4] with “life
is self-production” advocates [13], viewing copying and
maintenance as the two fundamental strategies for pre-
serving information. On some of the standard challenges
for definitions of life, the view would include mules, ex-
clude fire, and probably leave crystals on the margin,
depending on how much “information-theoretic” infor-
mation we expect to find in a crystal—which won’t be
much, if the crystal is pure. Impure or semi-crystalline
materials, such as, say, integrated circuits, are of course
another matter.

On the prospects for life in manufactured computers,
the view is that, rather than being an esoteric research
topic, that is a prosaic, long-established fact. Popular
software programs today are preserving their informa-
tion spectacularly, with population sizes in the millions
and booming; malicious computer viruses are harder to
measure though detections of new strains are booming
as well [12]. The emergence first of affordable personal
computers and now of mass-market computer network-
ing adds urgency to the real research question: With
the great flexibility of programmable computers laying
before us, what kind of artificial life do we want?

ACKNOWLEDGMENTS

I thank the research management: Tom Landauer, Mike
Lesk, George Furnas, & Jim Hollan; the gods of ver-
sion 0.0: Steve Abney, George, Michael Littman, & Scott
Stornetta; and the primordial gods of version 0.1: Ben
Bederson, Patrik D’haeseleer, George, Mark Handler,
Steve Hofmeyr, Lee Jensen, Craig Jorgensen, Nigel Kerr,
Michael, Adam Messinger, Nelson Minar, Anil Somayaji,
Jason Stewart, & Jeff Zacks, the creator of cerTk. All
screwups, of course, are my fault.

REFERENCES

1 Ackley, D.H., & Littman, M.L. (1994b) Altruism in
the evolution of communication. In Artificial Life
IV: Proceedings of the Fourth International Workshop
on the Synthesis and Simulation of Living Systems.
edited by R. A. Brooks & P. Maes. A Bradford Book,
The MIT Press: Cambridge, MA..

2 Belew, R.K., Mitchell, M., & Ackley, D.H. (1996, in
press). Computation and the natural sciences. In R.K.
Belew and M. Mitchell (editors), Adaptive individuals
in evolving populations: Models and algorithms. Read-
ing, MA: Addison-Wesley.

3 Curtis, P. LambdaMOO Programmer’s Manual. At
ftp://parcftp.xerox.com/pub/M00/Programmers-
Manual.txt

10

11

12

13

14

15

16

17

18

19

20

Dawkins, R. (1989) The Selfish Gene. Oxford Univer-
sity Press: New York.

Dawkins, R. (1995) River out of Eden: A Darwinian
View of Life. BasicBooks, HarperCollins Publishers:
New York.

Dewdney, A.K. (1984, May) In the game called Core
War hostile programs engage in the battle of bits. Sci-
entific American. See also, e.g., at ftp://ftp.csua.-
berkeley.edu/pub/corewar.

Forrest, S., Hofmeyr, S.A., Somayaji, A., and
Longstaff, T.A. (1996, in press). A sense of self for
Unix processes. 1996 IEEE Symposium on Computer
Security and Privacy.

Free Software Foundation, Inc. The GNU General
Public License Version 2. At http://www.cygnus.-
com/doc/license.html.

Gosling, J. and McGilton, H. (1995, May). The
Java Language Environment: A White Paper., Sun
Microsystems Computer Company. At http://-
java.sun.com/.

Hofmeyr, S. A. (1995, November). Human and al-
ife interactions in ccr. At http://www.cs.unm.edu/-
“steveah/ccr.ps.

Holland, J. H. (1995) Hidden Order: How Adaptation
Builds Complexity. Addison-Wesley: Reading, MA.
Kephart, J. O. A biologically inspired immune system
for computers. In Artificial Life IV: Proceedings of
the Fourth International Workshop on the Synthesis
and Simulation of Living Systems. edited by R. A.
Brooks & P. Maes. A Bradford Book, The MIT Press:
Cambridge, MA., 130-139.

Maturana, H. R., & Varela, F. J. (1980). Autopoiesis
and Cognition. Reidel: Dordrecht.

Maynard Smith, J. (1982). Evolution and the theory
of games. Cambridge University Press: Cambridge.
Minar, N. (1995). Floyd, a global network of com-
municating agents. At http://www.santafe.edu/-
“nelson/ccr/floyd/.

Ousterhout, J. K. (1994) An introduction to Tcl/Tk.
Addison-Wesley: Reading, MA.

Ray, T. S. (1991) An approach to the synthesis of
life. In Artificial Life IT, SFI Studies in the Sciences of
Complexity, vol. X, edited by C. G. Langton, C. Tay-
lor, J. D. Farmer, & S. Rasmussen, Addison-Wesley,
371-408.

Ray, T. S. (1995) A proposal to create a
network-wide biodiversity reserve for digital or-
ganisms. ATR Technical Report TR-H-133.

Also available at http://www.hip.atr.co.jp/ray/-
pubs/reserves/nodel.html.

Schneier, B. (1994) Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley: New
York.

Zimmerman, P. R. (1995) The Official PGP User’s
Guide. MIT Press: Cambridge, MA.

